

Berhan Gessesse, Gebeyehu, A., Abraraw A., Gezahagn W. Remote sensing Department, Space Science & Geospatial Institute A.Taravat, D. Petit, Deimos Space UK Ltd., Oxford, UK

→ THE EUROPEAN SPACE AGENCY

Motivations

- Irrigation farming complements rainfed agriculture, especially in arid lowland regions of Ethiopia.
- Precise and accurate information on irrigated cropland areas is crucial for achievable Ethiopia's food security and sustainable development strategy.
 However, mapping and quantifying the existing and potential irrigated lands remains a significant challenge in the country.

Data Sources for experiments in irrigation area mapping

Scenario	Input bands	Description				
1	B2, B3, B4, B8,	Visible and Near-infrared (VNIR)				
	B11, B12	Shortwave infrared (SWIR)				
2	Scenario 1 and	Combined use of spectral bands from scenario 1 and	9			
	VIs	vegetation Indices such as EVI, NDVI and LSWI computed				
		from selected Sentinel 2 Surface reflectance bands				
3	Scenario 1, 2	Combined use of the spectral bands and VIs from	27			
	and spectral	scenarios 1 and 2 respectively and the spectral features such				
	features	as variance, contrast and dissimilarity computed from				
		selected S2A Surface reflectance bands.				
4	Ground truth Data					
			1 1 01/17			

NB: EVI= Enhanced Vegetation Index; NDVI= Normalized Difference Vegetation Index and LSWI=`

Objective

>The objective of the study was to evaluate the performance OŤ advanced machine learning techniques, including Support Vector Machine (SVM), Random Forest (RF), and ResUNet deep learning model, and leveraging Earth Observation (EO) data to accurately map and visualize irrigation farming areas in the Awash Valley of Ethiopia.

Research Outline

Results

Models	Indices	S2A Bands	S2A Bands + VIs	S2A Bands+ VIs + Spectral Features	
	Overall accuracy (%)	66.75	64.91	67.54	
SVM	Kappa Coefficient	0.57	0.55	0.59	
	F1 Score (Statistics)	0.58	0.62	0.65	
	Overall accuracy (%)	77.72	77.88	82.33	
RF	Kappa Coefficient	0.721	0.72	0.81	
	F1 Score (Statistics)	0.78	0.78	0.86	
ResUnet (8,15,256 X256)	Overall accuracy (%)	79.12		84.13	
ResUnet (10,19,256)	Kappa Coefficient	0.76	0.79	0.83	
,	F1 Score (Statistics)	0.81	0.86	0.87	

Summary statistics of the accuracy assessment analysis results

Computed Irrigated Areas in the entire Project site

	Scenario 1		Scenario 2		Scenario 3		
	SVM	RF	SVM	RF	SVM	RF	ResUNet
Irregated Areas	Area(Km ²)	Area(Km ²)	Area(Km²)	Area(Km²)	Area(Km²)	Area(Km²)	Area(Km²)
	5375.68	4938.87	3565.83	3774.47	5026.65	2929.31	3102.83

Insights & Further Work

The EO4Africa project has established a foundation for future research in agricultural land monitoring using EO data and the EO-Africa Research and Development Innovation Lab. The study confirmed the effectiveness of Sentinel-2 imagery and the ResUNet model for irrigated area mapping. The ResUNet model, which achieved an average F1 score of 0.87, outperforming the RF and SVM models with F1 scores of 0.86 and 0.65, respectively. However, further refinement of satellite data processing and investment in deep learning model training and validation are needed to methodological expand impact on sustainable agriculture strategy intervention in Ethiopia.

LUILC Classes

80

0 20 40

39"36"30"8

Bare Land

41*6'45'E

___Km 120

→ THE EUROPEAN SPACE AGENCY